

By

Leopard20

1 |

Contents
1. Introduction .. 5

2. Feature Overview .. 5

3. Windows design .. 6

3.1. Moving and resizing ... 6

3.2. Docked mode ... 7

4. Debug console ... 8

4.1. Editing .. 8

Multi-tab editing ... 8

Syntax highlighting .. 8

Autocompletion .. 8

Function parameter hints ... 8

Command information .. 8

Tabs ... 9

Case conversion .. 9

Commenting out ... 9

Underlining (highlighting) ... 9

Search and replace .. 10

Undo and redo .. 10

Magic word ... 10

Saving the document .. 11

Open dialog ... 11

4.2. Code execution .. 12

Execution modes ... 12

Arguments ... 12

Code performance .. 13

Execution history .. 13

Preprocessor ... 13

5. Watch/Draw .. 14

5.1. Watch ... 14

5.2. Draw ... 14

1. Variable name ... 15

2. Draw icon .. 15

2 |

3. 3D Line .. 15

4. 2D Line .. 15

5. Connect successive points by line ... 15

6. Create object ... 16

7. Draw in world .. 16

8. Draw on map ... 16

9. Custom text ... 16

10. Condition ... 16

11. ASL/AGL position ... 16

12. Icon texture ... 16

13. Object model/class name ... 17

14. Parameters .. 17

Example ... 18

6. Config viewer .. 20

6.1. Navigation .. 20

Performance ... 20

Tree view ... 20

Back and forward .. 20

Config path, parents and source addons .. 21

6.2. Bookmarks ... 21

6.3 Config search ... 21

Quick Search ... 21

Deep search .. 22

6.4. Data viewer .. 23

Open as Text ... 23

Open as Array .. 23

Open as Image .. 24

Open as Sound .. 24

Open as Model .. 24

Open as Object .. 25

Opening raw data .. 25

Find in config ... 25

6.5. Go to config .. 25

3 |

7. Function viewer ... 26

7.1. Tree view .. 26

7.2. Search in functions ... 26

7.3. Syntax highlighting and line numbering .. 26

7.4. Search in function contents ... 26

7.5. Function recompilation .. 27

Recompile current ... 27

Recompile all ... 27

Recompile sub-classes .. 27

8. Color picker ... 28

8.1. Color palette .. 28

8.2. Color luminosity ... 28

8.3. Individual color channel sliders and edit boxes ... 28

8.4. Undo color changes ... 28

8.5. Hex and RGBA color formats .. 28

9. Export to Notepad++ ... 29

Step 1: Create a new UDL named “SQF” in Notepad++ .. 29

Step 2: Open the userDefineLang.xml file .. 29

Step 3: Open the Export to Notepad++ window ... 29

Step 4: Replace contents in the UDL (read thoroughly!) .. 29

Step 5: Create the auto-completion file ... 30

10. Settings .. 30

10.1. Debug console settings .. 31

Reset command formatting .. 31

Function auto-completion .. 31

Commands to use Special color .. 31

Maximum number of exec history .. 31

Init commands at startup .. 31

Replace the vanilla Debug console ... 31

Always show the Debug console ... 31

Show hint only if caret is at the end of a word ... 32

Replace vanilla function viewer .. 32

10.2. Config viewer settings .. 32

4 |

Number of unscheduled searches .. 32

Quick search: search all scanned configs .. 32

Open last config path when config viewer starts ... 32

Replace config viewer in 3DEN context menu .. 32

10.3. Watch settings ... 33

Default icon for drawIcon3D ... 33

Default object/model .. 33

Watch width/height scale ... 33

Variable name prefix for draw arrays ... 33

Icon scale factor .. 33

10.4. Theme settings ... 34

10.5. Advanced settings .. 34

Reset mod settings .. 34

Console shortcut key ... 34

Magic word ... 34

Remove all mouseButtonDown event handlers ... 35

Pixel precision ... 35

Make all windows resizable .. 35

11. Known issues ... 35

Window priority .. 35

Occasional crashes when you create new displays from the debug console ... 35

The vertical and horizontal scrolls don’t update when you resize the windows.................................... 35

12. Frequently Asked Questions (FAQ) ... 35

13. Credits and thanks .. 35

5 |

1. Introduction
Advanced Developer Tools is an Arma 3 mod that adds several new and revamped developer tools to the
game, namely the debug console, config viewer, function viewer, plus a few extra others.

As someone who has been creating mods for Arma for a long time, I found the vanilla and most existing
mods insufficient for my needs, so I decided to create this mod to increase the productivity speed for the
mod makers.

This documentation should explain everything you need to know to use this mod. If you find the document
too long, you can start from the contents page and only read the parts that you’re not familiar with.

2. Feature Overview
General Design:

• A familiar Windows design, with resizable and moveable windows. In addition to other Windows
features like snapping the Window to the screen borders. Enjoy a multi window experience in Arma 3!
• Customize the mod the way you want. The mod offers a wide variety of customization options,
including theming! You can recolor almost everything!

Debug Console:

• Enjoy SQF programming with syntax highlighting, with several predefined themes! (such as VSCode
Dark+)
• Multi-Tab design! Edit multiple scripts at the same time!
• Line numbers for easier tracking
• Auto-completion list (similar to VSCode/Notepad++), including event handler names, functions,
magic words, etc.
• Supports preprocessor commands (#define, #ifdef, #include, etc.) and line numbering for improved
debugging inside the debug console.
• Improved code editing features, such as Tabs (tab key), Case Conversion (Ctrl+Shift+U), Undo/Redo
(Ctrl+Z, Ctrl+ Y), Word Delete (Ctrl+Backspace/Delete), Commenting Out (Ctrl + Q), and many many
more!
• Search and Replace with various search options, along with Normal, Extended, and Regex search
modes!
• View the command syntax information in a new and improved Scripting Help window (F1)
• Added a new button that lets you run the code in Scheduled Environment directly (no need for spawn
anymore)
• Added a new button for custom RemoteExec: remoteExec the code for your target client(s)
• Added a text box for providing arguments to your test code (no need for _args call {...} anymore)
• Open files (from addons) and functions to view/edit them
• Dedicated Execution History window. Want to re-execute a command you tried some time ago? You
know where to find it!
• An advanced Color Picker at your disposal, which can come really handy if you're designing GUI
elements.

6 |

• Magic Word: Typing this into most text boxes will open the debug console, and you can continue
editing your code in there, and save it back into that text box!

Watch:

• Define as many Watched Expressions as you want!
• Customizable colors
• Pin watched expressions so that you can see them during gameplay!

Draw:

• Define custom "drawIcon"/"drawLine"s with just a few clicks! And as many of them as you want!
• Supports AGL and ASL position formats
• Precompiled code for faster execution (despite the extensive available options)

Config Viewer:

• A super-fast config viewer. No more annoyingly long loading times when you open the Config
Viewer!
• Custom designed tree view with “smart rendering” for faster performance (unlike vanilla RscTree)
• Customize the config viewer colors to your liking
• Replaces the vanilla config viewer in the context menu of Eden (right click on entity) for faster entity
lookup.
• Config Search: Search in the config in classes,
• Go to Config, which supports both direct config paths and expressions
• Accidentally went to another config? Want to go back? Use the Back and Forward feature!
• An advanced Data Viewer for viewing various types of config data, including: arrays, text, images,
colors, models, and sounds (sounds don't work very well at the moment)
• Dedicated Bookmarks window

Function Viewer:

• Supports syntax highlighting
• Searching in all available functions defined in mission config and config file
• Recompile functions by tag, category, or even individually.

3. Windows design
3.1. Moving and resizing
All windows are draggable, and some can even be resized (those with a maximize button, by default) and
minimized. You can make all windows resizable by enabling the option in mod settings, but since they
were not designed to be resizable you may encounter a lot of bugs.

You can resize windows in three ways, just like Windows:

7 |

1. Manual resize: drag the corners of the window
2. Snap resize: drag the window and drop in onto the edges of the screen
3. Fullscreen toggle: double click the window title, or use the dedicated fullscreen button.

Figure 1 - The debug console window. Notice the standard Windows buttons at the top right.

3.2. Docked mode
The debug console has an additional window button called “Toggle docked mode”, which looks like ⏏.
Docked mode puts the debug console directly above and aligned with the Watch tool, and prevents the
debug console from moving.

Note that the Config viewer, function viewer, animation viewer, etc. have been moved under the Tools
menu.

The height and width of the debug console in docked mode can be changed in settings.

Figure 2 - Debug console in Docked mode

8 |

4. Debug console
4.1. Editing
The editing features are very similar to standard IDEs and code editors.

Multi-tab editing
It is possible to edit multiple documents at the same time using the multi-tab feature. You can open a new
tab using the  (Ctrl+N) shortcut or through the File menu. To close a tab, use  (Ctrl+W).

Syntax highlighting
The contents of the debug console are automatically syntax-highlighted. The mod extracts all available
commands in the game, so there’s no need to update the mod to get the new commands that are
introduced with game updates. However, things such as Magic Words, Event Handler and Preprocessor
Commands are added manually.

Autocompletion
As you type, the mod will suggest new words to you based on commands, functions, and variable names
defined in the current document. You can make a selection using the  (Tab) key.

Figure 3 - Autocompletion list and syntax highlighting

Function parameter hints
The function parameter hint shows parameters as well as the return data type.

This is very important because sometimes the alternative syntaxes for some commands may return
completely different data types (e.g. one of createUnit syntaxes doesn’t return anything).

Figure 4 - Function parameter hints. Notice the return type in green

Command information
The command info window can be opened by pressing  (F1) while the caret is on a command.

New features compared to the vanilla command info:

1. Shows the return types and parameter types are shown directly under every parameter and
return value in GREEN for easier visibility.

2. Syntax highlighted examples, and example return values are shown as comments.
3. You can cycle through all alternative syntaxes for a command.

9 |

4. Link to wiki page for the commands.
5. Different categories, such as scripting commands, event handlers, functions, magic variables,

and preprocessing commands.

Figure 5 - Command info. Notice the highlighted example and command return types and parameter types in green

Tabs
You can insert tabs using the  (Tab) key. This will place a new tab at the start of the line, no matter
where the caret is. The mod will keep the current indentation level (number of tabs) when you go to the
next line.

Note that the tabs are only 1 character wide and hard to distinguish from spaces.

You can delete the tab using  (Shift+Tab). Deleting tabs across multiple lines is also possible.

Case conversion
You can convert to uppercase using  (Shift+Ctrl+U), and convert to lowercase using 
(Ctrl+U) shortcuts. This feature is also available under the Edit menu.

Commenting out
You can comment out a line using the (Ctrl+Q) shortcut. If you haven’t selected any characters, the
current line (where the caret is) will be commented out using // (single line comment). If you select
multiple lines/characters, the selection will be commented out using /* */ (multi-line comment)

You can uncommend a line using (Ctrl+Shift+Q).

Underlining (highlighting)
If you select a word, all instances of that word in the current document will be underlined, which is the
equivalent of highlighting in standard IDEs and editors (multiple highlights are not possible in Arma).

10 |

Figure 6 - All instances of the word "_unit" are underlined when one is highlighted.

Search and replace
You can open the Search and replace window using  (Ctrl+F). Three search modes are available:

1. Normal: All characters are treated as they are.
2. Extended: All instances of \n (next-line), \r (carriage return) and \t (tab) in Find what and Replace
with fields will be replaced with the appropriate character.
3. Regex: Regular expression search. For example, you can search for any word by searching \w+.

Some notes about regex:

Note that regex search doesn’t support searching backward. Also, the option Match whole word doesn’t
work, and if needed it has to be provided using the appropriate regular expression. However, the Match
case option works.

In addition, note that the mod uses the default C++ regex library. In that library, the capture groups are
represented in the format: $1, $2, etc., not \1, \2, etc. (what is used by Notepad++)

Figure 7 - Search and replace

Undo and redo
The editor supports undo and redo, so don’t worry about making mistakes. You can undo using 
(Ctrl+Z) and redo using  (Ctrl+Y) or  (Ctrl+Shift+Z).

Magic word
The mod has a feature called Magic Word, which allows you to open the debug console and edit many
scripting fields (e.g. object init fields, trigger statements, etc.) simply by typing the magic word into them.

11 |

In addition, if you mistakenly disable the debug console and can’t open it anymore, you can type the magic
word into the vanilla debug console to make the mod’s debug console reappear.

The default magic word is DBUG (note: no E!), but you can change the magic word in settings.

Note that the magic word only works in CT_EDIT controls that inherit from RscEdit or ctrlEdit.

Figure 8 - Using the magic word to edit the init field of a unit in 3den. Note that the contents saved into the init are
preprocessed.

Saving the document
At the time of writing, you can’t save the document to an external file. However, the contents of the
debug console (including all tabs) will be saved in the profileNamespace so you can safely close the debug
console at any time you want.

In addition, other information such as undo/redo, text selection and location of the caret will be kept in
the uiNamespace when you close the debug console, which means your editing experience is even more
seamless during a single game session, while at the same time avoids cluttering the profileNamespace.

Currently, the save option,  (Ctrl+S), will simply save the contents of the debug console into
profileNamespace. In addition, if you used the Magic word to edit a CT_EDIT control, the contents will be
saved into that control as well (after preprocessing, to keep it compatible with Eden scripting fields, which
don’t support comments and preprocessor commands).

Open dialog
The open dialog allows you to open files from addons and functions.

The left-hand tree view shows the structure of the addon (parent-child), and the right-hand tree view
shows the internal folder structure.

12 |

The tree view colors change from GREEN to RED to visualize the depth (level).

Figure 9 - The Open dialog

4.2. Code execution
Execution modes
There are 5 execution modes:

1. Local execution – unscheduled:
Executes the code using isNil {ARGS call CODE}.
2. Local execution – scheduled:
Executes the code using ARGS spawn CODE.
3. Remote execution – Global:
Executes the code using [ARGS, CODE] remoteExec [“call”, 0].
4. Remote execution – Server:
Executes the code using [ARGS, CODE] remoteExec [“call”, 2].
5. Remote execution – Custom:

Executes the code using [ARGS, CODE] remoteExec [“call”, TARGET]. To define the target, right-
click on the icon and type an expression which evaluates to valid target (see the remoteExec
documentation on the Wiki). For example, you can type something like: [0,-2] select isDedicated,
which evaluates to a number, which is a valid target for remote execution.

Arguments
It is possible to provide arguments to your code by typing an expression in the Arguments edit box. See
the section on Execution modes for more details on how these arguments are passed to your code.

13 |

Figure 10 – Providing arguments to the code

Code performance
You can measure the performance of your code using the button. This will execute your code for a
set number of cycles, and returns the average execution time in milliseconds (ms).

By default, the number of cycles is 10’000, but you can provide a custom number of cycles if desired.

Execution history
Every time you execute a code, a “snapshot” of the code will be saved in the profileNamespace. You can
see the execution history using the  (Ctrl+H) shortcut, or alternatively, open the window through
the File menu.

The codes are sorted by execution date, and placed in a tree view for easier access.

Figure 11 - Execution history

Preprocessor
The mod uses the SQF-VM preprocessor, which has a very good compatibility with the vanilla SQF
preprocessor. However, note that some features (especially new ones) may not be available.

14 |

5. Watch/Draw
The watch/draw window is shown when you pause the game. The  button switches between
watch/draw modes, and the  button adds a new watch/draw.

Figure 12 - The top bar of the Watch/Draw tool. Notice  the and  icons.

5.1. Watch
You can monitor a variable/expression using the Watch feature.

The Pin button pins the result of the expression to the left side of your screen, allowing you to track
the results during gameplay.

You can also change the color of an expression for easier tracking.

Figure 13 - Watched expressions and their results

5.2. Draw
This feature allows you to set up custom drawLines and drawIcons very quickly. It is useful when you’d
like to track the results of something visually (such as positions, lines, paths, etc.).

Figure 14 - Using the draw feature to show the AI path

In a nutshell, this feature creates a code for drawing icons, lines, and even objects in the world/map. The
code is precompiled for faster performance. The user can add draw elements simply by adding elements

15 |

(such as positions and objects) to an array (e.g. using pushback). I will show an example at the end of this
section.

The elements of each Draw window are as follows:

1. Variable name
This is the variable name used for the draw array. For example, in the above picture the variable name is
Points1. Points1 is an array, which you can fill with what you’d like to draw (as long as they are in
agreement with the parameters field).

Every time you add a new draw window, the mod creates the variable names in format:
VariablePrefix#n. The default variable prefix is Points, so the variable names will become Points1,
Points2, etc. You can change the variable prefix in settings.

The variable name is modifiable and you can change it to whatever you prefer (e.g. myAwesomePoints).

2. Draw icon
This check mark adds drawIcon (for map) and drawIcon3D (for world) elements to the code.

3. 3D Line
When either 3D Line or 2D Line options are turned on, you can show line elements in the world or map.
Note that despite the term 3D, it works both for map and world draw.

The term 3D simply refers to whether you want 3D line mode or 2D line mode in World draw (see below).
So you can either check this or 2D Line, not both.

4. 2D Line
This sets the line mode to 2D. Because the command drawLine3D has some limitations, such as not visible
through objects and showing very thin lines, you may want to use 2D lines instead.

Arma doesn’t have a “drawLine2D” command. So this is a custom feature added by this mod.

5. Connect successive points by line
Normally, when you have the 3D Line/2D Line option selected, each element of the draw array must have
a pair of points (each element must be in format [startPosition, endPosition]).

When this option is enabled (and 3D Line/2D Line must be enabled too), it automatically connects
successive points using lines and you don’t have to provide the start and end in each element.

1. Variable name (editable) 3. 3D Line 4. 2D Line 5. Connect Successive points by line

6. Create object

7. Draw in
world

8. Draw on
map

9. Custom text 10. Condition 11. ASL/AGL position

12. Icon
texture

13. Object
model/class
name 14. Parameters

2. Draw icon

16 |

For example, if the draw array is like: [pos1, pos2, pos3, …], this feature connects pos1 to pos2, and
pos2 to pos3, and …, using lines. Without this feature, the draw array would have to be like: [[pos1,
pos2], [pos2, pos3], …].

This feature is useful for showing paths, polygons, etc.

6. Create object
If you’d like to show some object at the position of a point, you can use this feature.

For example, this allows you to use the game’s arrow sign object (which looks like ) to show path points.

7. Draw in world
When this option is turned off, all draw elements that are shown in the world (Icon, 3D/2D Line and object)
won’t be created.

8. Draw on map
When this option is turned on, what you want to show (lines and icons) will also appear on the map.

9. Custom text
By default, the mod automatically adds the _forEachIndex (element index) as a text next to each point. If
you’d like to show a custom text instead, you can use this feature (an empty string will remove the text
shown next to a point)

Note that this requires Icon to be enabled.

10. Condition
If you’d like the icon/line to appear only when a certain condition is met, you can enable this feature.

Note that since the condition has to be dynamically evaluated, you have to supply a code that evaluates
to a boolean.

Special variables _p1 (first point) and _p2 (second point, in the case of a line) are available for use.

For example, this will only show the point if the player is closer than 5 meters to it (assuming ASL format):

{getPosASL player distance _p1 < 5}
11. ASL/AGL position
By default, the mod uses the AGL position for drawing elements (since the commands drawLine3D and
drawIcon3D require AGL positions).

However, since the AGL position is a relative position (height is relative to the ground), you may want to
use an absolute position in your codes. The best absolute position format is ASL. So I’ve provided the
option to directly use ASL positions without any need for conversions.

12. Icon texture
By default, each new draw window that you create uses the default icon defined in settings. This allows
you to change the texture icon (when Icon is turned on).

In addition to supporting absolute paths to the texture (such as \a3\...\somePicture.paa), the mod
also provides “magic names” that you can use instead of full texture paths. They are not case sensitive.

17 |

Magic names Icon

Cross X

Circle 

Cursor

Target

If you’d like to scale the icon, you can insert a multiplication before the icon name.

For example: 2*target uses the Target icon and scales it by a factor of 2 (spaces before and after the *
sign are optional).

Warning! This is not a mathematical expression! Don’t put () or any other signs (not even /) in the texture
name!

13. Object model/class name
By default, each new draw window that you create uses the default icon defined in settings. If you’d like
to show a custom object type, you can use the class name or path to model in here.

The mod also provides “magic names” for two common objects:

Sign_Arrow_F (recolorable): Use any of these: arrow, a, v, >, <

Sign_Sphere25cm_F (recolorable): Use any of these: sphere, ball, b, o, 0. (the last two are the letter
O and the number zero)

Similar to icon textures, you can also scale the objects if you want. For example, this will create the arrow
sign half size:

0.5*arrow

Warning! This is not a mathematical expression! Don’t put () or any other signs (not even /) in the model
name!

14. Parameters
Once you’ve set up your draw, you can see the required parameters for each element of the array.

Example 1:

If the parameters box says: posASL/obj, all you have to do is add positions or objects to the array:

18 |

Points1 pushBack player
This will show the icon where the player is (updated automatically because you provided an object).

Example 2:

If the parameters box says: [posAGL/obj, posAGL/obj, “Text”, {Condition}]:

Points1 pushBack [[1500,3500,0] , [1640,3400,0] , "This is a line" , {player distance
_p1 < 5 || player distance _p2 < 5}]
The above element will draw a line between positions _p1=[1500,3500,0] and _p2=[1640,3400,0],
shows the custom text This is a line, and will only show the line if the player is closer than 5m to
either _p1 or _p2.

Example
Let’s say I want to visualize the AI path points.

1. I want the array name to be AI_Path.
2. I don’t want any icons, instead I want to show them using the arrow object. I want the points to

be red.
3. Since I want the path index to appear, I won’t turn off Icon, instead I clear the icon texture edit

box.
4. I want the path points to be connected to each other using green lines.
5. I want 2D lines because I want to see the lines through objects.
6. I want to see the path both in the game and on the map.
7. Since the PathCalculated event handler returns the path in ASL format, I need to check ASL.

Based on the above requirements, this is the set up:

The only thing I need for every element is the position. So I add the “PathCalculated” event handler to the
AI like this:

AI addEventHandler ["PathCalculated", {
 params ["", "_Path"];
 AI_path = _Path;
}]
And that’s it! Now I can see the AI path every time I give him a move order!

19 |

Figure 15 – Following the above example, AI path can now be seen in the world and on the map

20 |

6. Config viewer

Figure 16 - The config viewer window

6.1. Navigation
Performance
You can seamlessly navigate through the config viewer without any annoyingly long loading times. The
mod only “scans” the config entries when needed, and will cache the entries for faster browsing (it gets
even faster the more you use it!).

Tree view
The config viewer features a custom tree view, which on the surface looks similar to the vanilla Tree View
control.

The vanilla tree view has some major problems:

1. If the tree has a lot of entries, it slows down the further you scroll down.
2. When you perform a search, the tree levels and what’s visible is modified.
3. When you collapse a branch, all sub-entries are also collapsed.

My custom tree view doesn’t have any of those problems. I’m using something which I personally call
“smart rendering”, which means it only creates controls in the visible part of the tree, which means even
if you have millions of config entries expanded, it won’t affect the scrolling performance!

Back and forward
If you jump to a certain config entry by mistake, you can go back using  (Ctrl+Z), and go foward using
 (Ctrl+Y) or  (Ctrl+Shift+Z).

21 |

Config path, parents and source addons
In addition to path and parents, which are also shown in the vanilla config viewer, you can also see the
config addon sources, which shows which mods are modifying the config entry.

6.2. Bookmarks
The mod has a dedicated bookmarks window. The shortcut is  (Ctrl+B).

In addition to user bookmarks, the bookmarks window automatically adds several entries under the
Default branch. They are detected based on the player’s current vehicle, weapons, magazines, and ammo.

To bookmark the currently open config path, use the  (Ctrl+S) or  (Ctrl+D) shortcuts.

Figure 17 - Bookmarks window

6.3 Config search
Quick Search
The quick search feature is designed to give you very fast (but limited) search results, and it only seaches
in class names. It has two search modes (both done automatically):

1. Config lookup (Exact match): It will search in common config classes (such as “CfgVehicles”,
“CfgAmmo”, “CfgMagazines”, “CfgMovesMaleStr”, etc.) to give you an exact match.
For example, if you search for AmovPercMstpSrasWrflDnon, it will direct you to ConfigFile >>
“CfgMovesMaleStr” >> “states” >> “AmovPercMstpSrasWrflDnon”.
2. First match: In this mode, you can perform partial search (e.g. CfgVeh to go to CfgVehicles), but
only in classes that are already scanned by the config viewer.

Figure 18 - The quick search text box and button

22 |

Deep search
The deep search mode allows you to search the config more thoroughly. It searches level by level and
config to config, so it is very slow. It also supports going backward to the previous found entry.

The deep search is “semi-scheduled”. It means that it performs several searches together (unscheduled),
but the search is being performed in the scheduled environment. This is done for two reasons:

1. Even though an unscheduled script can finish much faster that a scheduled script, since the deep
search can take a significantly long time, you must be able to cancel the search midway.

2. The search can’t be fully scheduled, because then it would take forever to finish.

You can specify the number of unscheduled searches in settings (default is 50). The larger this number,
the faster the search can finish, but also the game FPS will also become lower, making it harder to stop
the search.

You can open the Search window using the (Ctrl+F) shortcut, or access it from the Edit menu.

Figure 19 - Deep search window

Name: What to search in class name or property name

Value: What to search in property values (Search in Values must be checked)

Start from current class: It starts from the currently selected config entry and starts to go deeper from
there. If unchecked, it starts from the root of the config (can be extremely slow!).

Search in properties: If checked, it also searches the property names for the text in Name. If unchecked,
only class names will be searched (slightly faster).

Search in values: If checked, it searches in the config property values for the text in Value.

Clear search: The mod caches the last search results (e.g. for next and previous buttons). If you want to
start a new search, it is recommended to always clear the last search results (if search parameters haven’t
changed, otherwise the mod will clear the last results automatically).

Stop search: Thanks to the “semi-scheduled” search algorithm, if you want to stop the search for whatever
reason, you can use this button.

23 |

6.4. Data viewer
The data viewer allows you to see the contents of a config entry in its “processed” form. It opens
automatically when you double click a config property.

Multiple data viewer windows can be opened at the same time.

Figure 20 - Opening 3 data viewer windows at the same time.

It supports:

1. Plain text
2. Arrays
3. Pictures (.paa and .jpg)
4. Colors (array, procedural texture, and hex)
5. Models (.p3d)
6. Sound files (not working as intended)

If the mod fails to detect the appropriate data type or you want to open the data in a different format,
you can use the Open As feature.

Open as Text
Plain data shown as a text. Useful for copying the raw data.

Open as Array
If the config data is in array format, you can open it as array, which shows the elements using Tree View.

You can double click any element to open them in a new Data viewer window.

24 |

Figure 21 - The magazines of a unit, shown in array format

Open as Image
This feature can open:

1. Pictures (.paa and .jpg formats)
2. Color arrays (RGBA) such as [1,1,1,1]
3. Hex colors, such as “#FFFFFF”
4. Procedural textures, such as #(argb,8,8,3)color(1,1,1,1)”

Figure 22 - Open as Image can handle both pictures and colors.

Open as Sound
Not working as intended, because Arma doesn’t support playing sound files directly.

It simply uses playSound3D command, which requires that the game be unpaused. The sound can’t be
stopped.

Open as Model
Supports both cfgVehicle classnames and direct model paths (.p3d). Internally, it uses createSimpleObject.

25 |

You can move the camera by holding mouse left click on the window and dragging. You can also zoom
in/out using the mouse wheel.

Figure 23 - The 3D model of a Marshal APC, in data viewer.

Open as Object
This is almost the same as Open as Model, but the difference is that it uses the createVehicle command
to create the object (some objects don’t have a proper simple object model).

Opening raw data
At the bottom of each data viewer window, you can see the raw data used to show the result.

You can change this data to anything you want, and view the data using the Open As feature.

Find in config
Under the Edit menu you can find the option Find in config.

It uses the config lookup feature (same as Quick Search) to find a matching config entry.

For example, you can start by opening a CfgWeapons sub-class. If you open one of the magazines in data
viewer and use Find in Config, you go to the CfgMagazines entry for that magazine. If you open the ammo
property and use Find in Config, you can go to the CfgAmmo entry for that ammo.

6.5. Go to config
The Go to config window can be accessed from the Edit menu or using the  (Ctrl+G) shortcut.

You don’t necessarily have to enter the full config path, but only an expression that evaluates to a config
(e.g. you can use configOf player to jump to the player unit’s config).

26 |

7. Function viewer

Figure 24 - Function viewer window

7.1. Tree view
All functions are properly categorized in a multi-level tree view.

The tree levels are Tags, Categories, and finally the function name.

7.2. Search in functions
You can find a function very quickly simply by typing part of its name in the search box.

Note that you should only put the function name in the search box (TAG_fnc_ part should be omitted).

7.3. Syntax highlighting and line numbering
Read the contents of the function more properly using syntax highlighting.

Line numbers can help you find a line more quickly in the case of an issue (e.g. a function throws an error
at a specific line).

Note that the function viewer doesn’t have any parameter hints or command info. If you want these
features, you can open the function in Debug console using the Open button (don’t copy-paste!).

7.4. Search in function contents
The search feature is almost identical to the Debug console Search and replace, but there’s no replace
feature. You can open the search window using the  (Ctrl+F) shortcut.

27 |

Figure 25 - The Find window of Function viewer

7.5. Function recompilation
Three recompile modes are available:

Recompile current
Recompiles the currently open function.

Recompile all
All functions will be recompiled.

Recompile sub-classes
Recompiles all functions starting from the current selection in the tree view.

This feature is useful for recompiling functions in a certain category or mod.

For example, the following tree selection will recompile the functions starting from addWaypoint to
taskSearchArea.

Figure 26 - The tree view of the function viewer. Notice the selected tree item. Now all sub-classes (functions) can be recompiled.

If CBA was selected, all CBA functions (in all categories) would be recompiled.

28 |

8. Color picker
The color picker tool can be used for recoloring the parts of the mod that support theming. It can also be
opened directly from the debug console using the  (Alt+O) shortcut.

Figure 27 - The color picker window

8.1. Color palette
You can select colors more quickly from the color palette. The mouse cursor cannot be moved outside the
color palette window (this is a design feature).

8.2. Color luminosity
You can change the color luminosity using the vertical luminosity bar.

8.3. Individual color channel sliders and edit boxes
You can change the RGBA color channels separately using the provided sliders/edit boxes. The color will
update automatically.

8.4. Undo color changes
The original color information is kept, and is shown below the currently selected color.

To undo the color changes, simply click on the original color.

8.5. Hex and RGBA color formats
The hex and RGBA (percent) color formats are the most frequently used in SQF scripting.

As you change the color, these color formats are also updated and shown in the text boxes below the
color.

You can also insert the colors in these formats into these fields, and the color picker will automatically
read the color and set the slider values.

29 |

9. Export to Notepad++

This feature allows you to create (or update) a SQF user-defined language (UDL) in Notepad++. Currently
it has to be done manually, but in the future I might make it automatic.

In addition to auto-completion and syntax highlighting, it also exports the command parameter hints, but
it only works for commands with a right-hand array parameter, and it only shows after typing square
brackets [].

It will also export your currently selected functions.

Note that it doesn’t export the colors, so you’ll have to change them manually later (needs to be done
only the first time you do this).

Step 1: Create a new UDL named “SQF” in Notepad++
You can skip this step if you already have one.

If you create a new one, please close Notepad++ after that.

Step 2: Open the userDefineLang.xml file
You can simply execute this in Run ( Windows+R) and it’ll take you there:

%appdata%\Notepad++\userDefineLang.xml

Be sure to make a backup of this file first (File > Save a Copy As).

Step 3: Open the Export to Notepad++ window
You can find it here:

Debug console > Tools > Export to Notepad++

Step 4: Replace contents in the UDL (read thoroughly!)
Copy the exported keywords in the game (click on the clipboard button) and go back to the
userDefinedLang.xml file.

Find the SQF UDL (<UserLang name="SQF"), select everything under <KeywordLists> (see the picture
below), and then paste.

30 |

Note that all keywords under KeywordLists must be present after this step. If you notice a missing keyword,
undo the change (note that order of keywords does not matter).

Figure 28 - userDefineLang.xml - Notice the UDL name, and the selection start and end positions, which select everything after the
<KeywordLists> and before the </KeywordLists>

Step 5: Create the auto-completion file
Go back to the game and copy the autocompletion data (the second clipboard button).

Navigate to your Notepad++ installation folder (default is: Program Files (x86)\Notepad++ for 32 bit
version and Program Files\Notepad++ for the 64-bit version).

In the installation folder you should see the autoCompletion folder.

Create a new file named SQF.xml (if it doesn’t already exist), and delete the entire contents of the file and
paste the new contents from the clipboard.

10. Settings
The mod features an extensive list of settings to customize the mod. If I thought some parts of my design
are too subjective, I added the appropriate settings for the users to change them to their liking.

31 |

10.1. Debug console settings

Figure 29 - Debug console settings

Reset command formatting
Re-reads the commands and applies their formatting. It’s for debugging purposes.

Function auto-completion
By default, only BIS and BIN functions are available for auto-completion. If you want to add more functions
such as CBA and ACE for auto-completion, you can add them in here.

Commands to use Special color
If you want some commands to be in the Special color (which is used only for control structures, such as
if then), you can add them in here.

For example, if you want to add true and false, put: true;false in the edit box (they can be separated
by space, comma, or semicolon).

Maximum number of exec history
Sets the number of execution “snapshots” to keep. Note that larger numbers will clutter your
profileNamespace.

Init commands at startup
Detects the commands at game startup.

Replace the vanilla Debug console
The mod’s debug console will be used instead of the vanilla debug console.

Always show the Debug console
The mod’s debug console will appear in every mission when you pause the game, even if the debug
console for that mission is disabled.

32 |

Show hint only if caret is at the end of a word
By default, the mod shows the parameter hints when the caret is anywhere on a word. You can make it
only appear when the caret is placed at the end of the word.

Replace vanilla function viewer
Use the mod’s function viewer in the Tools menu.

10.2. Config viewer settings

Figure 30 - Config viewer settings

Number of unscheduled searches
Sets the number of unscheduled searches. Higher numbers will speed up the search but cause longer
freezes.

Quick search: search all scanned configs
If disabled, quick search will only search in the configs that are in the expanded tree view. It is faster but
obviously if something is not in view you can’t find it anymore.

It is recommended to keep this option on.

Open last config path when config viewer starts
Opens the config viewer to the last viewed config.

Replace config viewer in 3DEN context menu
When you right click on an entity in 3den and use the Find in Config option, it uses the mod’s config viewer
which is significantly faster.

33 |

10.3. Watch settings

Figure 31 – Watch/Draw settings

Default icon for drawIcon3D
The default icon to use with Icon draw mode.

Default object/model
Default object/model path to use for creating objects.

Watch width/height scale
The watch window will be scaled by this factor. The debug console will also move/resize accordingly.

Variable name prefix for draw arrays
Sets the variable name prefix for draw arrays. It must follow the variable naming convention (e.g. no
spaces, not starting with numbers, etc.). Also note that since this is a global variable, you can’t start it with
underscore either.

Icon scale factor
Sets the default icon scale. For individual icon scale factors, see the section on icon textures.

34 |

10.4. Theme settings

Figure 32 - Theme settings

You can change the colors of various elements here.

10.5. Advanced settings

Figure 33 - Advanced settings.

Reset mod settings
Delete all mod settings stored in missionNamespace/uiNamespace/profileNamespace.

Console shortcut key
If you want to open the Debug console using a shortcut, you can set it here.

Magic word
Sets the magic word. Magic word is not case sensitive.

35 |

Remove all mouseButtonDown event handlers
It is needed for the debug console to work properly when it replaces the vanilla debug console.

Pixel precision
Pixel precision is very similar to anti-aliasing. It smooths text edges but may make them blurry.

Make all windows resizable
All windows will become resizable, but many will be buggy.

11. Known issues
Window priority
The order of window will depend on the order in which they were created. This can cause some issues
when you have more than two windows open and you switch to a previous window.

For example, if you open Win1, Win2 and Win3 in that order, and switch to window Win1, and then switch
to Win2, Win3 will still be on top of Win1.

Note that this won’t create any issues with the window you’re currently working with. So it’s a minor issue.

This is an Arma feature and I can’t fix it.

Occasional crashes when you create new displays from the debug console
Sometimes when you execute a code that creates a new display, the game might crash. To circumvent
this issue, execute the code scheduled.

The vertical and horizontal scrolls don’t update when you resize the windows
Not all that important but it can be a bit annoying. When the contents of the window change, the scrolls
will update as well.

12. Frequently Asked Questions (FAQ)
Q1. I disabled all options and now I can’t open the debug console anymore. What should I do?

A1. Use the magic word feature. Type the magic word into any text box to make the debug console appear
again.

Q2. What language did you use to write this mod?

A2. All parts except for the preprocessor and regex are written in SQF. The preprocessor and regex were
written in C++.

13. Credits and thanks
Thanks for reading through the document. This should’ve helped you use the mod more effectively.

You may also have noticed the extensive level of details and attention that was put into this work!

If you like my work and would like to support me, please check out my Patreon page.

https://www.patreon.com/leopard20

	1. Introduction
	2. Feature Overview
	3. Windows design
	3.1. Moving and resizing
	3.2. Docked mode

	4. Debug console
	4.1. Editing
	Multi-tab editing
	Syntax highlighting
	Autocompletion
	Function parameter hints
	Command information
	Tabs
	Case conversion
	Commenting out
	Underlining (highlighting)
	Search and replace
	Undo and redo
	Magic word
	Saving the document
	Open dialog

	4.2. Code execution
	Execution modes
	Arguments
	Code performance
	Execution history
	Preprocessor

	5. Watch/Draw
	5.1. Watch
	5.2. Draw
	1. Variable name
	2. Draw icon
	3. 3D Line
	4. 2D Line
	5. Connect successive points by line
	6. Create object
	7. Draw in world
	8. Draw on map
	9. Custom text
	10. Condition
	11. ASL/AGL position
	12. Icon texture
	13. Object model/class name
	14. Parameters
	Example

	6. Config viewer
	6.1. Navigation
	Performance
	Tree view
	Back and forward
	Config path, parents and source addons

	6.2. Bookmarks
	6.3 Config search
	Quick Search
	Deep search

	6.4. Data viewer
	Open as Text
	Open as Array
	Open as Image
	Open as Sound
	Open as Model
	Open as Object
	Opening raw data
	Find in config

	6.5. Go to config

	7. Function viewer
	7.1. Tree view
	7.2. Search in functions
	7.3. Syntax highlighting and line numbering
	7.4. Search in function contents
	7.5. Function recompilation
	Recompile current
	Recompile all
	Recompile sub-classes

	8. Color picker
	8.1. Color palette
	8.2. Color luminosity
	8.3. Individual color channel sliders and edit boxes
	8.4. Undo color changes
	8.5. Hex and RGBA color formats

	9. Export to Notepad++
	Step 1: Create a new UDL named ?SQF? in Notepad++
	Step 2: Open the userDefineLang.xml file
	Step 3: Open the Export to Notepad++ window
	Step 4: Replace contents in the UDL (read thoroughly!)
	Step 5: Create the auto-completion file

	10. Settings
	10.1. Debug console settings
	Reset command formatting
	Function auto-completion
	Commands to use Special color
	Maximum number of exec history
	Init commands at startup
	Replace the vanilla Debug console
	Always show the Debug console
	Show hint only if caret is at the end of a word
	Replace vanilla function viewer

	10.2. Config viewer settings
	Number of unscheduled searches
	Quick search: search all scanned configs
	Open last config path when config viewer starts
	Replace config viewer in 3DEN context menu

	10.3. Watch settings
	Default icon for drawIcon3D
	Default object/model
	Watch width/height scale
	Variable name prefix for draw arrays
	Icon scale factor

	10.4. Theme settings
	10.5. Advanced settings
	Reset mod settings
	Console shortcut key
	Magic word
	Remove all mouseButtonDown event handlers
	Pixel precision
	Make all windows resizable

	11. Known issues
	Window priority
	Occasional crashes when you create new displays from the debug console
	The vertical and horizontal scrolls don?t update when you resize the windows

	12. Frequently Asked Questions (FAQ)
	13. Credits and thanks

